Stereoselective Synthesis of *E*-Olefins by the Reaction of Alkenylboranes with Palladium Acetate

By HIDETAKA YATAGAI, YOSHINORI YAMAMOTO,* and KAZUHIRO MARUYAMA (Department of Chemistry, Faculty of Science, Kyoto University, Kyoto 606, Japan)

and Akio Sonoda and Shun-Ichi Murahashi

(Department of Chemistry, Faculty of Engineering Science, Osaka University, Osaka 560, Japan)

Summary Alkenyldialkylboranes (1) react smoothly at room temperature with $Pd(OAc)_2-Et_3N$ to produce *E*-olefins (2) stereoselectively in moderate to high yields.

WE recently reported that alkenylboranes can stereoselectively give reactive alkenylcopper compounds by transmetallation from B to Cu using methylcopper.¹ We have examined if the alkenyl group of the borane could be stereoselectively transferred to another transition metal.² We chose palladium as the transition metal, and investigated the reaction of alkenylboranes with various palladium salts.³ Palladium acetate in tetrahydrofuran (THF) reacted with (1) to produce *E*-olefins (2) (Scheme 1). The results are summarized in the Table.

TABLE. Reaction of (1) with $Pd(OAc)_2-Et_3N$ to give the *E*-olefins (2) (Scheme 1).^a

	R1	R²	% Yield of (2) ^b
a;	\mathbf{Ph}	CHMeCHMe2c	98(86)
b;	\mathbf{Ph}	Cyclohexyle	58` ´
C;	Ph	2-Methylcyclohexyl ^c	(86)
d;	But	CHMeCHMe ₂ d	74(58)
е;	$Cl[CH_2]_3$	CHMeCHMe ₂ d	(61)

^a All reactions were performed on a 1 mmol scale. Isolation was carried out on a 5 mmol scale. ^b Identified by i.r. and ¹H n.m.r. spectroscopy, elemental analysis, and/or comparison with the authentic materials. Yields by g.l.c., based on the acetylenes (isolated yields are in parentheses). ^c Catalytic amounts (7 mole %) of Et₃N were used. ^d Stoicheiometric amounts of Et₃N were used.

The stereochemistry of the product in each case was > 96% E, shown by g.l.c. and ¹H n.m.r. and i.r. spectroscopy. The reaction of alkenylboranes with other palladium salts, such as PdCl₂, Pd(acac)₂, Pd₂(dibenzylidenacetone)₃, and Pd(PPh₃)₄, did not give satisfactory results. All attempts to carry out the reaction catalytically with Pd(OAc)₂ were unsuccessful. The effect of triethylamine

deserves comment. With the styryl compounds (1a--c), use of a catalytic amount of Et_aN gave highest yields, whereas for the alkyl compounds (1d and e) a stoicheiometric amount was required for satisfactory yields (ca. 30% yield in the presence of 0.05 mmol of Et₃N).

Zweifel has reported the stereoselective synthesis of E-olefins from alkenylboranes using BrCN.⁴ Attempts to use this method with the styryl boranes (1a-c) failed; the reaction of (1a) with BrCN gave styrene instead of (2a). Consequently, the present reaction offers a noteworthy addition to the existing methodology and seems to involve an interesting problem in boron and palladium chemistry.

Two mechanisms may be considered (Scheme 2): (a) an intermolecular coupling process via the alkenyl palladium by analogy with transmetallation of B to Hg² and Pd,³ and (b) an intramolecular process.

A mixture of (1a) and dicyclohexylacyloxyborane was treated with $Pd(OAc)_2$ -Et₃N, but the cross coupling product $(\beta$ -cyclohexylstyrene) was not obtained, thus eliminating mechanism (a). Therefore, the intramolecular mechanism is postulated; cis acetoxypalladation,⁵ followed by migration with inversion,⁶ and then cis β -elimination.⁶

The following procedure for the synthesis of (2a) from (1a) is representative. A solution of (1a) (5 mmol) in THF was added to a stirred mixture of Pd(OAc)₂ (5 mmol), Et₃N (0.35 mmol), and dry THF (50 ml) under N₂. The mixture was stirred overnight, and then filtered through an alumina column to remove precipitated Pd metal. Distillation gave (2a), 86%, b.p 71-72 °C at 1 mmHg.

(Received, 22nd August 1977; Com. 883.)

¹Y. Yamamoto, H. Yatagai, A. Sonoda, and S-I. Murahashi, J.C.S. Chem. Comm., 1976, 452; Y. Yamamoto, H. Yatagai, K. Maruyama, A. Sonoda, and S-I. Murahashi, J. Amer. Chem. Soc., 1977, 99, 5652. ² For transmetallation from B to Hg, see R. C. Larock, S. K. Gupta, and H. C. Brown, J. Amer. Chem. Soc., 1972, 94, 4371.

⁴ G. Zweifel, R. P. Fisher, J. T. Snow, and C. C. Whitney, J. Amer. Chem. Soc., 1972, 94, 6560.
⁵ P. M. Henry, Adv. Organometallic Chem., 1975, 13, 363. Normally, acetoxypalladation in acetic acid proceeds in a trans fashion.

⁸ E. Negishi, G. Lew, and T. Yoshida, J. Org. Chem., 1974, 39, 2321; G. L. Larson and A. Hernandex, J. Organometallic Chem., 1975, 102, 123.